Parameter estimation for fractional Ornstein-Uhlenbeck processes

نویسنده

  • Yaozhong Hu
چکیده

We study a least squares estimator b θT for the Ornstein-Uhlenbeck process, dXt = θXtdt+σdB H t , driven by fractional Brownian motion B H with Hurst parameter H ≥ 1 2 . We prove the strong consistence of b θT (the almost surely convergence of b θT to the true parameter θ). We also obtain the rate of this convergence when 1/2 ≤ H < 3/4, applying a central limit theorem for multiple Wiener integrals. This least squares estimator can be used to study other more simulation friendly estimators such as the estimator θ̃T defined by (4.1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum L1-norm Estimation for Fractional Ornstein-Uhlenbeck Type Process

We investigate the asymptotic properties of the minimum L1-norm estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by a fractional Brownian motion.

متن کامل

Sequential Estimation for Fractional Ornstein-Uhlenbeck Type Process

We investigate the asymptotic properties of the sequential maximum likelihhod estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by fractional Brownian motion.

متن کامل

Estimation of the Hurst parameter in some fractional processes

We propose to estimate the Hurst parameter involved in fractional processes via a method based on the Karhunen-Loève expansion of Gaussian process.We specifically investigate the cases of the Fractional Brownian motion(FBm) and the Fractional Ornstein-Uhlenbeck(FOU) Family. The main tool is the analysis of the residuals of a convenient linear regression model. We numerically compare our results...

متن کامل

Parameter Estimation for Ornstein-uhlenbeck Processes Driven by Α-stable Lévy Motions

The parameter estimation theory for stochastic differential equations driven by Brownian motions or general Lévy processes with finite second moments has been well developed. In this paper, we consider the parameter estimation problem for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions. The classical maximum likelihood method does not apply in this context because the likelihood ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009